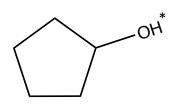
Gen-Chem #4: Acid-Base Basics

1.) Hey, gang! Now that we've dabbled a bit with structure-drawing, let's tackle another important skill we need for our organic toolbox: Acid-Base Chemistry. Below are a bunch of acid-base reactions at equilibrium. The question is, what side is favored at equilibrium? Well, that's your job to figure out: Using the 5 acid-base rules we've discussed, tell me **which way** the equilibrium is favored. I have full faith in you ©.

*Remember the 5 rules: Size, electronegativity, hybridization, resonance, and inductive effect


$$H_{2}O + HS^{-} \longrightarrow OH^{-} + HS_{2}$$
 $H_{3}AS + H_{2}P^{-} \longrightarrow H_{2}AS^{-} + H_{3}P$
 $OH^{-} + NH_{3} \longrightarrow NH_{2}^{-} + H_{2}O$
 $+ \longrightarrow OH^{-} + HNO_{2} \longrightarrow HSO_{4}^{-} + H_{3}O^{+}$

2.) Well done, but on to the next one: Here, you need to <u>draw</u> resonance structures for the **conjugate bases** of H_2SO_4 and H_3PO_4 (HSO₄ and H_2PO_4 , respectively). Afterwards, flex that acid-base knowledge of yours and provide a BRIEF explanation as to why $\underline{H_2SO_4}$ is a <u>stronger</u> acid than H_3PO_4 (said another way, HSO_4 is a more stable conjugate base than H_2PO_4 , right? But, I bet you were already thinking that).

3.) All right, one more stop on this worksheet. Displayed below will be sets of 2 structures, both containing a starred (*) hydrogen. Circle the structure with the more acidic hydrogen, and then let's call it a wrap. Finish strong!

